Межнейронные контакты синапсы: строение, функция и эволюция



Дата15.10.2018
өлшемі191.95 Kb.
Межнейронные контакты - синапсы: строение, функция и эволюция.

Обухов Д.К.

Санкт-Петербургский государственный университет.Санкт-Петербург, Центр «Интеллект» Лисий нос. ЛО.

Биология в школе 2016, № 7, с. 3-12.
Аннотация

В статье приведены современные сведения о структуре, принципах работы и эволюции межнейронных контактов (синапсов) различного вида. Подробно разбирается морфология синапсов. Особое внимание уделено вопросам молекулярных механизмов работы синапсов и их эволюции в процессе становления и развития нервной системы у животных.



Ключевые слова:

нервная система, нейрон, синапс, медиаторы, синаптические рецепторы



Введение

Долгое время в нейробиологии боролись два представления о принципах клеточной организации нервной системы. По одному из них постулировалось, что в нервной системе возможны прямые контакты (типа синцития) между отростками нервных клеток. Приверженцем этой теории был знаменитый итальянский нейрогистолог Камилло Гольджи (18431926). Вторая точка зрения, поддержанная выдающимся испанским нейрогистологом Сантьяго Рамон-и-Кахалем (1852-1934) постулировала, что между нервными клетками существует система специализированных контактов – синапсов. Интересно, что оба они одновременно были удостоены Нобелевской премии (1906) за исследования нервной системы. Только с появлением современных электронных микроскопов вторая точка зрения получила окончательное подтверждение. Сам термин - синапс (греч. sinapsis – соединение, связь) был введен известным английским нейрофизиологом Ч. Шериннгтоном еще в конце 19-го века.



Таким образом, в конце ХХ – века окончательно сложилась «нейронная теория строения нервной системы», основными положениями которой стали тезисы о том, что нейрон – это элементарная единица нервной ткани и что нейроны соединяются друг с другом или с другими клетками организма посредством специальных межнейронных прерывистых контактов – синапсов.

Классификация синапсов.

Классифицировать синапсы можно исходя из разных их параметров и свойств.

- По способу передачи межнейронные контакты можно разделить на: химические, электрические и смешанные (электро-химические).

- По той части нейрона, которая образует контакт, выделяют наиболее часто встречающиеся аксо-дендритные или аксо-шипиковые контакты (шипики – многочисленные микроскопические выросты на дендритах). Реже бывают аксо-аксональные, аксо-соматические и дендро-дендритные синапсы. Последняя группа синапсов имеет значение для обеспечения процессов регуляции деятельности нейронов (например: при взаимодействии аксонных терминалей с аксоном собственного нейрона) или для осуществления тормозных взаимодействий в нейронных цепях (например, при пресинаптическом торможении). В принципе любая часть нейрона может образовать контакт с любой частью другого нейрона. Нейроны также могут образовывать синапсы с клетками других тканей и органов (например: нейро-мышечные контакты). Связи между нейронами могут осуществляться как одиночными синапсами различного вида, так и сложными комплексами типа "гломерул". Синаптические комплексы построены по двум принципам: конвергенции и дивергенции. В центре конвергентного синаптического комплекса находится один постсинаптический элемент – тело или отросток нейрона, на котором оканчивается несколько пресинапсов различного происхождения и типа. В дивергентном комплексе отношения обратные: одна пресинаптическая часть контакта – аксон, оказывает влияние на несколько постсинаптических элементов.

- По механизму действия на соседние нейроны синапсы разделяются на возбуждающие или тормозные (см. ниже).



Химические синапсы (строение, принцип работы, свойства). Этот вид межнейронных контактов широко представлен в нервной системе всех животных – от низших беспозвоночных до высших млекопитающих и человека. У высших животных (как позвоночных, так и беспозвоночных) они преобладают в нервной системе.

Принципиальная схема строения химического синапса едина: та часть нервной клетки (аксон, дендрит или участок тела нейрона), которая образует контакт, называется пресинапсом, затем идет синаптическая щель (шириной от 10 до 500 нм), а та часть, на которой оканчивается контакт – постсинапсом. (Рис. 1).




Рис.1 Электронная фотография химического синапса.

Обозначения: 1 – пресинапс, 2 – постсинапс, 3 – скопления синаптических пузырьков, 4 – пресинаптическое утолщение (активная зона синапса), 5 – постсинаптическое утолщение, 6 –митохондрия в пресинапсе. Масштаб 200 нм.

Основной принцип работы химического синапса – использование специальных химических веществ (медиаторов, трансмиттеров) для передачи сигнала от одного нейрона другому. Медиаторы находятся в пресинапсе в специальных мембранных структурах – синаптических пузырьках. Показано, что популяция синаптических пузырьков неоднородна. Большая часть их образует т.н. «резервный пул», который располагается в отдалении от пресинаптической мембраны и «рабочий пул», который используется в работе синапса в первую очередь. Пузырьки претерпевают в процессе работы синапса определенный цикл, по мере которого они используются в работе синапса, а затем вновь заполняются медиатором/ми. Также в пресинапсе находятся элементы цитоскелета и транспортной системы клетки (микротрубочки, актиновые филаменты, миозин), митохондрии, ферментные системы для синтеза медиатора. (Рис. 2).


Рис. 2 Схема строения химического синапса (аксо-шипиковый синапс).

Обозначения: 1 – миелиновая оболочка аксона; 2 – аксон; 3 – аксонная терминаль (пресинапс); 4 транспорт синаптических пузырьков по аксону или в самой терминали; 5 – синаптический пузырек с медиатором/ми; 6 – движение пузырька к пресинапстической мембране; 7 - Са+2 каналы (активированные в момент прихода импульса); 8 – слияние (fusion) пузырька с пресинаптической мембраной в активной зоне синапса и экзоцитоз медиатора в синаптическую щель; 9 – диффузия медиатора в синаптической щели к постсинаптической мембране; 10 – пресинаптические рецепторы (в том числе к собственному медиатору/ам); 11 – эндоцитоз пузырьков; 12,13 – рециклинг пузырьков в пресинапсе с образованием эндосомы и новых пузырьков.


Известно несколько десятков химических веществ, выполняющих функции нейромедиаторов или нейромодуляторов. Это могут быть: аминокислоты (глутамат, глицин, ГАМК, таурин и др.); амины (ацетилхолин, гистамин, серотонин, допамин, адреналин, норадренаил и др.); белки (энкефалины, эндорфины, вещество Р, VIP- нейропептид, нейротензин, ряд других нейрогормонов); пуриновые соединения (АТФ, ГТФ, аденозин, инозин) и даже газообразные вещества (NO, CO, H2S).

Газообразные посредники имеют ряд свойств, отличающих их от классических медиаторов. Все они легко проникают через мембрану, выделяются из любого участка клетки, не запасаются в синаптических пузырьках и не освобождаются экзоцитозом и являются коротко живущими. Клеточные эффекты газов опосредуются либо через систему внутриклеточных посредников, либо через прямое влияние на субъединицы ионных каналов, белки экзоцитоза, внутриклеточные ферменты. В роли нейромедиаторов и нейромодуляторов газы имеют преимущества перед другими посредниками по скорости синтеза и выделения, степени проницаемости через мембрану и широкому спектру мишеней. Особенности действия газов позволяют предполагать их важную роль в процессах развития нервной системы, формировании кратковременных и долговременных изменений в синаптических структурах, связанных с процессами памяти и обучения.

При этом нейроны могут синтезировать и выделять в своих окончаниях целый набор медиаторов и комедиаторов (например, в ацетилхолиновых синапсах в качестве комедиаторов могут присутствовать: энкефалин, VIP, вещество P, соматостатин или нейротензин).

Вещества, которые претендуют на роль медиатора, должны соответствовать нескольким критериям:

- они должны синтезироваться нейроном и храниться в синапсах;

- при поступлении нервного импульса выделяться в синаптическую щель и избирательно связываться со специфическими рецепторами на постсинаптической мембране другого нейрона;

- вызывать соответствующую физиологическую реакцию;

- при введении в нервную систему извне оказывать такой же физиологический эффект, как и эндогенные медиаторы.

Синтез медиаторов идет в теле клетки, а затем с помощью транспортной системы нейрона пузырьки, заполненные медиатором (или пустые), поставляются по аксону в пресинапс. Часть медиатора синтезируется непосредственно в синапсе и заполняет синаптические пузырьки. Поскольку в одном синапсе может быть несколько медиаторов, то они могут находиться как в отдельных синаптических пузырьках, так и в одном (пузырьковая фракция). Кроме того часть медиатора/ов обнаруживается непосредственно в цитоплазме пресинапса (цитоплазматическая фракция). Обе эти фракции могут обмениваться друг с другом и участвовать в работе синапса. Количество медиатора, находящегося в одном пузырьке, получило наименование «квант». Например, в пузырьке ацетилхолинового синапса содержится примерно 10000 молекул ацетилхолина. Выброс медиатора с синаптическую щель происходит квантами, но для возникновения нервного импульса необходим выброс одновременно множества квантов.

В нервной системе позвоночных и беспозвоночных животных используются одни и те же медиаторы. Различия касаются только набора используемых медиаторов. В нервной системе низших животных встречается меньшее разнообразие медиаторов, чем в нервной системе высших позвоночных и беспозвоночных животных. Большее разнообразие дает возможность комбинировать наборы медиаторов в синапсах и создавать более сложные нейронные сети.

Важно отметить, что термины "нейромедиатор", "нейромодулятор", "нейрогормон" отражают скорее механизм взаимодействия этих соединений с клетками-мишенями, чем их химическую природу. Одно и то же вещество может выступать как в роли медиатора, так и нейрогормона. Многие нейропептиды, например энкефалины и эндорфины, ранее рассматриваемые только как нейрогормоны, выделяются аксонными терминалями и выступают в роли нейромедиаторов. Другие действуют не только через межнейронные сипапсы, но и выделяются нейросекреторными и эндокринными клетками, выступая как типичные гормоны (адреналин, дофамин, серотонин и др.)

Важнейшей частью пресинапса является пресинаптическая мембрана с ее специализированными участками, названными активными зонами синапса, где происходит контакт синаптичеких пузырьков с мембраной и экзоцитоз медиатора в синаптическую щель. Активная зона не занимает всю площадь синаптического контакта и может меняться в зависимости от активности работы нейрона.

В состав активной зоны синапса - помимо самой пресинаптической мембраны, входят т.н. «пресинаптические субмембранные утолщения» имеющие в проекции гексагональное расположение и отличающиеся чрезвычайно сложным устройством. В их состав входит около 100 белков, наиболее важные из которых можно объединить в три комплекса. Первый комплекс предназначен для формирования основы цитоматрикса активной зоны. Второй белковый комплекс взаимодействует с мембраной пресинапса и регулирует экзоцитоз синаптических пузырьков. Третий, ключевой в этой белковой системе т.н. «SNARE – комплекс», обеспечивает подход (docking) и слияние (fusion) синаптических пузырьков с пресинаптической мембраной. Он включает такие важные синаптические белки как: синтаксин, синапсин, синаптобревин (VAMP) и белок SNARE-25. Важность этого комплекса подчеркивается фактом полного нарушения работы синапса при взаимодействии белков SNARE – комплекса с рядом нейротоксинов (ботулином или столбнячным токсином).

Со стороны пре- и постсинаптической мембраны в синаптическую щель выступают молекулы межклеточной адгезии (катенины, кадгерины, нейрексины, нейролигины и др.). Их роль состоит в связывании и закреплении пре- и постсинаптических мембран. Кроме того, в синаптической щели могут находиться ферменты, предназначенные для дезактивации медиатора/ров после выполнения ими своей функции.



Постсинапс является важнейшей частью синаптического контакта и включает несколько компонентов: собственно постсинаптическую мембрану со встроенными в нее постсинаптическими рецепторами и ионными каналами, субмембранный комплекс (постсинатическое утолщение) и элементы цитоскелета постсинапса. Вся эта структура предназначена для стабилизации постсинаптических рецепторов и ионных каналов в мембране и формирования нового нервного импульса (постсинатическое возбуждение или торможение).

Важно отметить, что знак работы синапса не зависит от химической природы медиатора, а связан со свойствами постсинаптических рецепторов. Этот важнейший факт был установлен автралийским ученым, лауреатом Нобелевской премии 1963 года Д. К. Экклзом.






Постсинаптические рецепторы являются сложными белковыми комплексами, встроенными в постсинаптическую мембрану. Выделяют три основных вида таких рецепторов: ионотропные, метаботроные и каталитические.

Ионотропные рецепторы представлены мембранными белковыми комплексами, состоящими, как правило, из 4-5 белковых субъединиц с ионным каналом в центре. При связывании медиатора с таким рецептором одновременно открывается ионный канал, происходит перераспределение ионных потоков внутри и снаружи мембраны, вследствие чего изменяется трансмембранный потенциал и возникает нервный импульс (постсинатический потенциал действия). (Рис 3, а).



Рис. 3 Схема строения ионотропного (А) и метаботропного (В) синаптических рецепторов, Б – субъединицы ионотропного никотинового ацетилхолинового (N-Ah) рецептора (объяснения в тексте).
Ионотропные рецепторы открываются почти мгновенно (время реакции ~10 мкс), но остаются открытыми лишь в течение нескольких миллисекунд. Ионотропные рецепторы классифицируются по типу медиатора, с которым они связываются, и по типу ионного канала. Если рецептор работанет на Na+ или Ca+2 - канале, то при их активации, происходит вход ионов внутрь постсинапса, развивается деполяризация мембраны и возникает возбуждающий постсинаптический потенциал (ВПСП). Если рецептор работает на хлорном (Cl-) канале, то происходит гиперполяризация мембраны и возникает тормозный постсинаптический потенциал (ТПСП), препятствующий возникновению потенциала действия. (ПД). Синаптическое торможение играет важную физиологическую роль в ЦНС, ограничивая избыточное возбуждение в нейронных сетях.

Одним из наиболее изученных синаптических рецепторов является ионотропный никотиновый ацетилхолиновый рецептор (nAhR), работающий в нервно-мышечном синапсе. Он представляет собой мембранный белковый комплекс, состоящий из 5-ти интегральных белков и ионного К+/Na+ - канала. В его состав входят: две α1 - и по одной: β, γ, δ - субъединицы. (Рис. 3,б) Медиатор (две молекулы ацетилхолина) соединяются с двумя α1 – субъединицами рецептора.

В нервной системе существует несколько модификаций ацетилхолинового рецептора, различающихся по типу и соотношению субъединиц, входящих в состав рецептора. Например, в ЦНС существует ацетилхолиновый рецептор, состоящий из пяти α-субъединиц 7-типа. (α7)5. Важно отметить, что разные модификации ацетилхолинового ионотропного рецептора встречаются в разных отделах нервной системы и обладают разными функциональными характеристиками. Таким образом, создается возможность комбинировать набор рецепторов в разных синапсах и нейронах.

Метаботропные рецепторы представляют собой сложный молекулярный комплекс, где рецепторная часть и ионный канал пространственно разобщены в мембране постсинапса (Рис. 3,в). В связи с этим необходим «посредник/и, мессенджер» для связи их друг с другом и дальнейшей передачи сигнала на мембрану или вглубь клетки.

После взаимодействия медиатора с рецептором происходит активация т.н. G – белка. G - белок обладает ферментативной активностью и активирует мембранный белок аденилатциклазу, которая, в свою очередь, превращает АТФ в молекулы циклического аденозинмонофосфата (цАМФ - вторичный посредник). Одна молекула аденилатциклазы вызывает образование множества молекул цАМФ. Молекулы цАМФ активируют цАМФ-зависимую протеинкиназу, которая фосфорилирует белки ионного канала и он открывается.

Эффект всех метаботропных рецепторов опосредуется через те или иные системы вторичных посредников. В качестве вторичных посредников могут выступать многие соединения: циклический аденозин- или гуанинмонофосфат (цАМФ, цГМФ); инозитол-3-фосфат (ИФ3); диацилглицерид; тирозин; ионы Са+2 и др. Помимо мембранных протеинкиназ они могут активировать соответствующие внутриклеточные протеинкиназы, которые путем фосфорилирования цитоплазматических или ядерных белков запускают разнообразные внутриклеточные реакции. Так, в частности, действуют многие гормоны.

Метаботропные рецепторы сохраняют активированное состояние в течение секунд или минут после связывания с медиатором. Поэтому они имеют более длительные эффекты, чем ионотропные рецепторы.

Как и ионотропный никотиновый рецептор (nAhR), метаботропный мускариновый ацетилхолиновый рецептор (mAhR) имеет несколько разновидностей, различающихся по вторичным посредникам и типам ионных каналов (Табл. 1).

Табл. 1. Некоторые характеристики метаботропных ацетилхолиновых рецепторов разного вида (М1-М5) и их распределение в организме человека. Количество плюсов отражает степень встречаемости рецептора в данной структуре/органе.




М1

М2

М3

М4

М5

Тип G -белка

Gq/11

Gαi/o

Gq/11

Gαi/o

Gq/11

Вторичный посредник

ИФ3

цАМФ

ИФ3

цАМФ

ИФ3

Ионный канал

Са+2

К+

Са+2

К+

Са+2

Центральная

нервная система



Неокортекс

+++

+++

++

++

+

Мозжечок

++

+++




++

+

Гиппокамп

+++

++

++

++

+

Гипоталамус







++







Спинной мозг




+++




++




Периферическая нервная система и органы

Глаз







++




+

Сердце

++

+++

++

++

++

Гладкая мускулатура

++

++

++







Нейроны симпатических

ганглиев


++

++




+



Также как и никотиновые (nAhR), мускариновые (mAhR) рецепторы разных подтипов могут располагаться как на разных нервных клетках, так и на одном нейроне. Например, на пирамидном нейроне гиппокампа найдены все пять подтипов mAhR. (см. Таб. 1).

Другие медиаторы, встречающиеся в нервной системе животных и человека, имеют свои разновидности ионотропных и метаботропных рецепторов. Порой весьма многочисленные.

Каталитические рецепторы, также распространенные в нервной системе позвоночных и беспозвоночных животных, представляют собой белковые структуры, способные, с одной стороны, связываться с медиатором, с другой стороны, обладают ферментативной активностью. Большая часть таких рецепторов представлена тирозинкиназами, которые способны при активации фосфорилировать как сам белок–рецептор (автофосфорилирование), так и белки в цитоплазме, запуская каскад биохимических реакций в клетке.

Исходя из особенностей строения и принципов работы, химические синапсы обладают рядом общих свойств. Они односторонние (синаптические пузырьки находятся только в пресинапсе); медленные (процессы экзоцитоза медиатора, его взаимодействия с рецепторами и т.д. занимают много времени); утомляемые (развитие утомления связано с истощением запасов нейромедиатора, который может израсходоваться в несколько минут, а иногда и секунд).

Итак, основные этапы передачи в химическом синапсе можно кратко описать следующим образом:

1. Нервный импульс, идущий по мембране аксона, достигает пресинаптической терминали.

2. Деполяризация мембраны аксонного окончания приводит к активации расположенных на ней потенциалзависимых Са+2 - каналов и ионы Са+2 устремляются внутрь синапса, активируя систему транспорта синаптических пузырьков к активной зоне пресинаптической мембраны

3. Синаптические пузырьки взаимодействуют с белками активной зоны синапса и путем экзоцитоза выделяют медиатор в синаптическую щель, где они диффундируют к постсинаптической мембране.

4. Медиатор взаимодействует с рецепторами постсинаптической мембраны.

5. Активация ионных каналов приводит к де- или гиперполяризации постсинаптической мембраны, в результате чего формируется возбуждающий (ВПСП) или тормозный (ТПСП) постсинаптический потенциал.

6. После прекращения взаимодействия медиатора с рецептором происходит процесс его инактивации путем обратного захвата медиатора пресинапсом, либо расщеплением его ферментами, находящимися в синаптической щели, либо захватом медиатора и его компонентов глиальными клетками.
Электротонические (электрические) синапсы. Впервые явление прямой электрической передачи импульса в синапсах было продемонстрировано при изучении гигантских нервных волокон ракообразных в 1959 году. В настоящее время показано, что электрические синапсы представляют собой одну из разновидностей межклеточных контактов – т.н. щелевых контактов (gap junction). (Рис. 4.)



Рис.4. Электрический синапс.

Электронная фотография дендро-дендриного контакта (А), схема строения эл.синапса (Б); строение коннексонов (В) (объяснения в тексте).


Основу его составляют сложные молекулярные комплексы – коннексоны, каждый из которых образован своеобразной «розеткой» из шести белков – коннексинов (connexin - Cx). В центре такого комплекса находится канал, который может пропускать ионы, чем и объясняются электрические свойства контакта. Коннексоны двух соседних мембран контактируют в узкой синаптической щели (2-3 нм), разделяющей соседние нейроны. Важно подчеркнуть, что никакого слияния мембран соседних клеток при этом не происходит.

Коннексины, образующие коннексоны в электрических синапсах у разных типах нейронов и глиальных клеток, различаются по молекулярному весу и кодируются разными генами. Так, например, коннексоны, образующие контакты между астроцитами (разновидность глиальных клеток) состоят из коннексинов - Cx43, а между интернейронами коры больших полушарий – Cx36. Также показано, что в состав коннексонов могут входить разные комбинации коннексинов. Естественно, что это определяет различия в функциональных параметрах данных контактов, например, разную чувствительность к гипер- или деполяризации мембран контакта или разную проницаемость для анионов или катионов.

Такая структура электрических синапсов определяет и основные функциональные особенности данных контактов, существенно отличающих их от химических синапсов: возможность проводить импульс в обоих направлениях, большая скорость проведения импульса, неутомляемость.

Электрические синапсы распространены и в нервной системе беспозвоночных животных и имеют сходное строение с таковыми у позвоночных. Белки, образующие коннексоны у беспозвоночных животных получили наименование иннексины (innexsinInx) и паннексины (pannexinPanx). Они во многом гомологичны коннексинам позвоночных животных.

Функциональное предназначение электрических синапсов в нервной системе состоит в возможности быстрой координации и согласованной деятельности групп нейронов в тех или иных нервных центрах. Особенно их много в ганглиях нервной системы беспозвоночных и в ряде отделов нервной системы позвоночных животных, чья деятельность связана с осуществлением и регуляцией быстрых врожденных рефлексов (например: в центрах спинного мозга и ствола мозга). В связи с этим, одни исследователи рассматривают электротонические синапсы как первичные в эволюции нервной системы и указывают на существование в филогенезе процесса замещения электротонических контактов химическими. Другие считают, что как электрические, так и химические синапсы возникли в эволюции нервной системы очень рано и имеют широкое распространение в нервных центрах животных всех филогенетических групп. Преобладание же в ряде нервных центров того или иного типа синаптической передачи определяется функциональными задачами данного центра, а не его филогенетическим происхождением. Эта точка зрения базируется на фактах обнаружения типичных химических и электрических синапсов в нервной системе низших многоклеточных животных с одной стороны, и в высших интегративных центрах конечного мозга млекопитающих и птиц с другой. Более того, показано, что синапсы, образуемые одним аксоном, могут работать с использованием и химического и электротонического механизмов (т.н. смешанные электро-химические синапсы). Интересно, что в смешанных синапсах одновременно могут работать как химический, так и электрический компоненты контакта.

Помимо участия в проведении нервного импульса электротонические контакты выполняют и другую важную функцию в нервной системе. Размер поры в коннексонах позволяет проходить через них не только ионам, но и ряду молекул весом до 1kD. Среди них могут быть такие важные молекулы как: вторичные посредники (цАМФ, цГМФ, Са2+, ИФ3), витамины, ганглиозиды, простогландины, некоторые медиаторы и даже низкомолекулярные РНК. Это явление получило название «транссинаптический перенос» и играет важную роль в метаболизме нейронов.Электрическая передача довольно устойчива (по сравнению с химическими синапсами) к различным воздействиям на нервную систему (фармакологические влияния, кислородное голодание, понижение температуры, ионный дисбаланс).Таким образом, видно, что электрические синапсы являются равноправными элементами межнейронных взаимодействий и необходимы для нормального функционирования нервной системы всех животных и человека.



Литература

  1. Андреева Н.Г., Обухов Д.К., Демьяненко Т.П., Каменская В.Г. Морфология нервной системы. Уч.пособие. – Л.: Изд-во ЛГУ, 1985. – 160 с.

  2. Заварзин А.А. Сравнительная гистология. Учебник. – СПб.: Изд-во СПбГУ, 1985. – 520 с.

  3. Зефиров А.Л., Черанов С.Ю., Гиниатуллин Р.А., Ситдикова Г.Ф., Гришин С.Н. Медиаторы и синапсы. Уч.пособие. – Казань.: Изд-во КГУ, 2003. – 130 с.

  4. Обухов Д.К., Кириленкова В.Н. Клетки и ткани. Уч.пособие. – М.: Дрофа, 2008. – 288 с.

  5. Руководство по гистологии (под ред. Р.К.Данилова) – 2-е изд. Т.1 – СПб.: Спецлит 2011. – 831 с.

  6. Structural and functional organization of the synapse (J.W Hell, M.D Ehlers, eds.) – Springer Publ., N-Y-Berlin, 2008.

Автор:

Обухов Дмитрий Константинович

 Академик Российской и Европейской академии естествознания, доктор биологических наук, профессор Санкт-Петербургского государственного университета, учитель биологии бысшей категории; преподаватель ГБОУ ДОД «Центр Интеллект», Ленинградская область, пос. Лисий нос.



e.mail dkobukhov@yandex.ru





Каталог: uploads -> doc -> 07d5
doc -> Сыныптан тыс сағат Тақырыбы : «Наурыз тойы» Ұлттық ойындар №3 9-10-11-сынып
doc -> Сабақтың тақырыбы Ішкі, сыртқы және аралас бездер Жалпы мақсаттары
doc -> Сабақ жоспары Мұғалім: Сабыргалиева Гулсім Сәлімқызы Сынып: 8 " а "
doc -> 1. Хлоропластары көп ұлпа a фотосинтездеуші ұлпа
doc -> ДСҰ- ның Саудадағы техникалық кедергілер жөніндегі комитеті 2015 жылдың 1-30 қараша аралығында жарияланған хабарламалар тізімі
07d5 -> Сабақтың тақырыбы: Кәсіби сөздер Сабақтың мақсаты: Білімділік


Достарыңызбен бөлісу:


©stom.tilimen.org 2019
әкімшілігінің қараңыз

    Басты бет