Лекция 3 Протолитическая теория. Ионное произведение раствори- мости. Вычисление рН кислот и оснований



бет1/4
Дата21.06.2018
өлшемі0.49 Mb.
#75698
түріЛекция
  1   2   3   4


Лекция 3

Протолитическая теория. Ионное произведение раствори-

мости. Вычисление рН кислот и оснований.

Протолитическая теория кислот и оснований Бренстеда и Лоури.

 

Протолитическая теория кислот и оснований была предложена в 1923 году независимо друг от друга датским учёным Й. Брёнстедом и английским учёным Т. Лоури. В ней понятие о кислотах и основаниях было объединено в единое целое, проявляющееся в кислотно-основном взаимодействии: А В + Н. Согласно этой теории кислотами являются молекулы или ионы, способные быть в данной реакции донорами протонов, а основаниями являются молекулы или ионы, присоединяющие протоны. Кислоты и основания получили общее название протолитов.



Сущностью кислотно-основного взаимодействия является передача протона от кислоты к основанию. При этом кислота, передав протон основанию, сама становится основанием, так как может снова присоединять протон, а основание, образуя протонированную частицу, становится кислотой. Таким образом, в любом кислотно-основном взаимодействии участвуют две пары кислот и оснований, названные Бренстедом сопряженными: А1 + В2 А2 + В1.
Одно и то же вещество в зависимости от условий взаимодействия может быть как кислотой, так и основанием. Например, вода при взаимодействии с сильными кислотами является основанием: H2O + H H3О, а реагируя с аммиаком, становится кислотой: NH3 + H2O NH4 + OH.
 

Теория электролитической диссоциации С. Аррениуса.

 

Растворы всех веществ можно разделить на две группы: электролиты-проводят электрический ток, неэлектролиты-проводниками не являются.



Электролитическая диссоациация-это процесс распада веществ на ионы при растворении или расплавлении.

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы - положительные и отрицательные.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы (Na+, Mg2+, Аl3+ и т.д.) - или из нескольких атомов - это сложные ионы (NО3-, SO2-4, РОЗ-4и т.д.).

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами.

Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).
Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например, уравнение диссо­циации молекулы электролита КA на катион К+ и анион А- в общем виде записывается так:

КА K+ + A-

Теория электролитической диссоциации является одной из основных теорий в неорганической химии и полностью согласуется с атомно-молекулярным учением и теорией строения атома.
Автопротолиз и ионное произведение воды.

 

Автопротолиз — гомофазный процесс самоионизации, обратимый процесс передачи протона от одной нейтральной молекулы жидкости к другой и образования в результате равного числа катионов и анионов.



Наиболее важное значение имеет автопротолиз воды. Константа автопротолиза для воды обычно называется ионным произведением воды и обозначается как . Ионное произведение численно равно произведению равновесных концентраций ионов гидроксония и гидроксид-анионов. Обычно используется упрощенная запись:

. Ионное произведение численно равно произведению равновесных концентраций ионов гидроксония и гидроксид-анионов. Обычно используется упрощенная запись:

При стандартных условиях ионное произведение воды равно 10−14. Оно является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. Автопротолиз воды объясняет, почему чистая вода, хоть и плохо, но всё же проводит электрический ток.

На основе ионного произведения воды вычисляются водородный показатель и константа гидролиза солей, константа сольватации (произведение растворимости) — важнейшие характеристики равновесных процессов в растворах электролитов.

10.Водородный показатель и его роль в качественном анализе.

Водоро́дный показа́тель, pH (произносится «пэ аш», английское произношение англ. pH — piː'eɪtʃ «Пи эйч») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред.

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.
ТЕОРИИ КИСЛОТ И ОСНОВАНИЙ

Живой организм - это открытая стационарная система. Состояние относительного постоянства внутренней среды организма называют гомеостазом. Одним из важнейших факторов гомеостаза живых организмов является поддержание кислотно-основного состояния организма, т.е. концентрации ионов водорода на определенном уровне. Это состояние получило название изогидрии.

Определения кислот и оснований данные Аррениусом получили название «классических». Позднее были предложены другие теории кислот и оснований, из которых наибольшее признание получили теории Брёнстеда и Лоури и электронная теория Льюиса.

5.1.1. Теория Аррениуса

Согласно теории Аррениуса, кислота - это электролит, диссоциирующий в растворе с образованием катионов водорода; основание - это электролит, диссоциирующий в растворе с образованием гидроксид-ионов; амфолит - это электролит, диссоциирующий в растворе с образованием как катионов водорода, так и гидроксид-ионов.

Аммиак не содержит гидроксид-ион, но проявляет свойства основания. Углекислый газ не содержит ион водорода, но проявляет в растворах кислотные свойства. Теория Аррениуса имеет ряд ограничений. Она объясняет кислотно-основные свойства молекулы, но не может объяснить кислотно-основные свойства заряженных частиц - ионов.

5.1.2. Теория Брёнстеда и Лоури

По этой теории кислотой называют всякое вещество, молекулы которого (в том числе и ионы) способны отдавать протон, т.е. быть донором протонов; основанием называют всякое вещество, молекулы которого (в том числе и ионы) способны присоединять протон, т.е. быть акцептором протонов; амфолитом называют всякое вещество, которое является и донором, и акцептором протонов.

Данная теория объясняет кислотно-основные свойства не только нейтральных молекул, но и ионов. Кислота, отдавая протон, превращается в основание, которое является сопряженным этой кислоте. Понятия «кислота» и «основание» являются относительными понятиями, так как одни и те же частицы - молекулы или ионы - могут проявлять как основные, так и кислотные свойства в зависимости от партнера.



При протолитическом равновесии образуются кислотно-основные пары. Согласно протонной теории, гидролиз, реакции ионизации и нейтрализации не рассматриваются как особое явление, а считаются обычным переходом протонов от кислоты к основанию.



Реакции гидролиза, нейтрализации и ионизации являются частными случаями протолитических равновесий и называются реакциями протолиза. Равновесия, установившиеся в растворах между кислотами и сопряженными основаниями, называются протолитическими.



5.1.3. Электронная теория Льюиса

Протонная теория не объясняет кислотно-основные свойства веществ, которые не содержат водород (например, галогенидов бора, кремния), - в этом ее ограниченность. Теория Льюиса объясняет кислотно-основные свойства веществ не на молекулярно-ионном, а на электронном уровне и связывает их с переносом электронной пары от одной частицы к другой. Основание является донором, а кислота - акцептором электронной пары. Взаимодействие между кислотой и основанием заключается в образовании донорно-акцепторной связи между реагирующими частицами.





5.2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПРОТОЛИТИЧЕСКОЙ

ТЕОРИИ

5.2.1. Автопротолиз воды. Константа автопротолиза

Водородный показатель pH

Вода как слабый электролит в малой степени подвергается ионизации: H2O ↔ H+ + OH-. Ионы в водном растворе подвергаются гидратации (aq.)






Для воды характерна протолитическая амфотерность. Реакция самоионизации (автопротолиза) воды, в ходе которой протон от одной молекулы воды (кислоты) переходит к другой молекуле воды (основанию) описывается уравнением: H2O + H2O ↔ H3O+ + OH-.

Константа равновесия самоионизации воды равна:

К константе ионизации применим закон действующих масс:



где a - активность.

Для краткости вместо H3O+ в кислотно-основном равновесии пишут

H+.

Так как вода находится в растворе в большом избытке и в малой степени подвергается ионизации, то можно отметить, что ее концентрация величина постоянная и равна 55,6 моль (1000 г : 18 г/моль = 56 моль) в литре воды.

Следовательно, произведение Ки2O) и концентрации воды равны 1,8•10-16 моль/л • 55,6 моль/л = 10-14 моль22. Таким образом, [H+][OH-] = 10-14 (при 25 °С) является постоянной величиной, обозна-

чается Kw и называется константой автопротолиза воды. Иногда используют устаревшее название - ионное произведение воды. Используя это значение, можно рассчитать концентрации ионов гидроксония и гидроксид-ионов в чистой воде:

Итак, в чистой воде или любом водном растворе при постоянной температуре произведение концентраций катионов водорода и гидроксид-ионов есть величина постоянная, называемая константой автопротолиза или ионным произведением воды.

Ионное произведение воды величина важная и позволяет для любого водного раствора определить концентрацию ионов водорода при известной концентрации гидроксид-ионов и наоборот.

Например, если [H+] = 10-5 моль/л, то [OH-] = 10-14/10-5 = = 10-9 моль/л.

Растворы, в которых концентрация ионов водорода и гидроксид-ионов одинакова - называют нейтральными растворами [H+] = [OH-] = = 10-7 моль/л. В кислых растворах [H+] > [OH-], [H+] > 10-7моль/л, а в щелочных [OH-] > [H+], [OH-] > 10-7 моль/л. Удобно пользоваться не абсолютными величинами K(H2O), [H+] и [OH-], а их отрицательным десятичным логарифмом. Обозначают рК(Н2О), pH и рОН. Прологарифмировав и изменив знаки в уравнении, получим: pH + + рОН = 14. Если pH = 3, то рОН = 14 - 3 = 11. pH и рОН однозначно тесно связаны между собой. Для упрощения за основу принимают водородный показатель pH - десятичный логарифм концентрации водородных ионов, взятый с обратным знаком: pH = -lg[H+].




Среда нейтральная при pH = 7, среда кислая при pH < 7, а при pH > 7 - среда щелочная.

В растворах различают общую, активную и потенциальную кислотность, которые обозначают: [H+]общ, [H+]акт, [H+]пот  и выражают в моль/л. Общая кислотность - это концентрация всех катионов водорода (свободных и связанных), имеющихся в растворе при данных условиях. Определяют общую кислотность методом нейтрализации раствора. Активная кислотность - это концентрация свободных катионов водорода, имеющихся в растворе. Мерой активной кислотности является значение pH раствора. Потенциальная (резервная) кислотность измеряется количеством катионов водорода, связанных в молекулах слабых кислот в растворе. Она равна разности между общей и активной кислотностями: [H+]пот = [H+]общ - [H+]акт.



5.2.2. Методы определения pH

Определение pH осуществляют потенциометрическим, визуально-колориметрическим или фотоколориметрическим методами.



Для определения pH визуально-колориметрическим методом используют кислотно-основные индикаторы, которые представляют собой слабые органические кислоты и основания, имеющие различную окраску в диссоциированной и молекулярной формах. Цвет раствора индикатора зависит от соотношения между ионной и молекулярной формами. Их концентрация зависит от pH раствора. Следовательно, окраска раствора будет показателем концентрации ионов водорода.

На совмещении протолитических равновесий основано использование индикаторов для определения pH. Индикаторы представляют собой слабые кислоты или основания, изменяющие окраску в обратимых протолитических реакциях. Молекулярная форма одноцветных индикаторов бесцветна, ионная - окрашена. В растворе индикатора-кислоты устанавливается равновесие:



При добавлении к водному раствору такого индикатора более сильной, чем индикатор кислоты, сопряженное основание (Ind-) переходит в соответствующую бесцветную кислоту (HInd): интенсивность окраски ослабевает или исчезает. Наоборот, прибавление нескольких капель раствора щелочи вызывает смещение равновесия в противоположном направлении: концентрация окрашенной формы индикатора [Ind-] возрастает, интенсивность окраски усиливается. Это соответствует определенному значению pH. Очевидно, что в данных условиях возникают конкурентные отношения между основаниями OH- и Ind-за протон.






Преобразовав уравнение кислотной ионизации применительно к индикатору-кислоте, получим:

Последнее уравнение можно привести к виду:



где α - степень ионизации индикатора.

Величина pH раствора равна значению pKa(HInd), если концентрации молекулярной и ионной форм индикатора равны между собой. Интенсивность окраски индикатора изменяется в определенном диапазоне значений pH, отвечающих двум крайним случаям полного смещения равновесия, однако отчетливые изменения окраски, фиксируемые визуально или с помощью фотометра, возможны в том случае, если концентрации одной формы превышают другую не более чем в 10 раз. Следовательно, в случае индикаторов-кислот можно обна-

Диапазон значений pH = pKa(HInd) ± 1 называется интервалом перехода окраски индикатора.

Область значения, при которой происходит изменение окраски индикатора можно рассчитать по формуле pH = рКинд ± 1. Интервал перехода метилового оранжевого ~4±1, т.е. 3-5. Чем выше Кд индикатора, тем легче его молекула распадается на ионы, тем меньше значение pH, при котором он изменяет свою окраску. Например, Кд метилового оранжевого ≈10-4 гораздо больше, чем Кд фенолфталеина ≈10-9. Поэтому область перехода метилового оранжевого лежит при более низких значениях pH раствора.

В настоящее время изготавливают индикаторную бумагу, пропитанную смесью различных индикаторов и показывающую несколько переходов цвета; с помощью такой бумаги можно определить pH раствора с точностью до единицы в интервале pH 1-13. Такую индикаторную бумагу называют универсальной индикаторной бумагой.



Характеристики некоторых кислотно-основных индикаторов



5.2.3. Кислотно-основное равновесие в жизнедеятельности организма

Определение pH имеет большое значение в медицине, так как биохимические процессы протекают при определенном значении pH: кровь (плазма) pH 7,4; эритроциты - 7,25; моча - 5,0-7,0; слюна - 6,0-8,0; желудочный сок - 0,8-1,0; кишечный сок - 8,3; желчь - 6,5-7,3; спинной мозг - 7,5-7,85; пот - 4,2-7,5. Сдвиг pH от нормы сигнализирует о какой-то патологии.






В результате жизнедеятельности в организме образуется большое количество кислот. Больше всего образуется углекислоты (до 13 моль ежесуточно), которая в основном выводится из организма в виде углекислого газа в процессе дыхания. Снижение выделения углекислого газа только на 0,13 моль приводит к серьезным патологическим изменениям в организме. Кроме того, в организме образуются нелетучие кислоты: серная, фосфорная, молочная и другие кислоты в количестве 30-80 ммоль в сутки. При некоторых патологических состояниях увеличивается их выделение до 1 моль. В основном это ацетоуксусная, р-гидроксимасляная кислоты, что приводит к нарушениям кислотно-основного состояния организма, и если нарушение устойчивое и изменение pH ниже нормы, то развивается ацидоз (при передозировке снотворного). При повышении pH выше нормы развивается алкалоз (при длительной рвоте). pH плазмы крови 7,4, эритроцитов - 7,25. Изменение pH плазмы крови <7,4, только на 0,2 приводит к ацидозу, а pH >7,4 только на 0,2 - алкалозу. Активность ферментов проявляется при определенном значении pH. pH чистого желудочного сока 0,9. Пепсин желудочного сока активен при pH 1,5- 2,0, секрет поджелудочной железы - 7,5-8,0, желчи в желчном пузыре - 5,4-6,9. Каталаза крови проявляет ферментативную активность при pH 7,0.

Нарушение состояния изогидрии наблюдается при сердечнососудистых заболеваниях, при ишемии, сахарном диабете (развивается ацидоз). Кислотно-основное равновесие поддерживается дыханием, мочевыделением, потоотделением. Данные системы работают медленно, а немедленная нейтрализация кислых и щелочных продуктов метаболизма осуществляется буферными системами организма. Состояние изогидрии обеспечивается совместным действием ряда физико-химических и физиологических механизмов. Буферное действие обеспечивается путем совмещения нескольких протолитических равновесий.




5.2.4. Сила кислот и оснований.

Реакции нейтрализации с позиций теории

протолитических равновесий

Сила кислот определяется их способностью отдавать протон. Мерой этой способности служит константа кислотности (Ka). В водном растворе для произвольной кислоты HB функцию основания выполняет вода:

В дальнейшем любую кислоту будем обозначать «а», а основание - «b». В обозначении иногда приписывают индекс «1» или «2», при этом у основания и кислоты одной сопряженной пары индекс одинаковый. Если одну из протолитических пар образует вода, то ей приписывают индекс «2». Важно отметить, что действующие концентрации значительно выше, чем концентрации H+ и OH-.

Константа равновесия в соответствии с законом действующих масс



Чем больше константа кислотности, тем сильнее кислота. Например, уксусная кислота сильнее, чем циановодородная кислота, так как Ka(CH3COOH) = 1,74•10-5, Ka(HCN) = 1•10-9. Для удобства расчетов и записи часто пользуются не самими константами, а их отрицательными десятичными логарифмами: pKa = -lgKa. Величину pKa называют силовым показателем кислоты. Например, pKa(CH3COOH) = = -lgKa(CH3COOH) = -lg1,74•10-5 = 4,76; pKa(HCN) = 9. Чем больше величина pKa, тем слабее кислота.

Сильные кислоты практически полностью отдают свой протон молекулам воды, поэтому кислотой, присутствующей в растворе, является фактически ион гидроксония.

В связи с этим при расчете pH раствора сильной одноосновной кислоты концентрацию протонов приравнивают к концентрации кислоты



c(H3O+) = c(HB).

В растворах слабых кислот концентрация ионов гидроксония значительно ниже концентрации кислоты. Она рассчитывается на основании



обеих частей этого уравнения дает формулу для расчета pH растворов слабых кислот: pH = 0,5(pKa - lgc(HB)).






Сила оснований определяется их способностью принимать протон.

Мерой этой способности служит константа основности (Kb). Для произвольного основания в растворе функцию кислоты выполняет вода:



Приложение закона разведения Оствальда к растворам слабых оснований, способных принять только один протон, дает возможность определить в таких растворах концентрацию гидроксид-ионов: c(OH-) =



ния получаем: pOH = 0,5(pKb - lgc(B)), pH = pKw - 0,5(pKb - lgc(B)), где pKb - силовой показатель основания (отрицательный десятичный логарифм).

Константы кислотности и основности в сопряженной паре для водного раствора связаны между собой: Ka • Kb = Kw. Чем сильнее кислота, тем слабее сопряженное ей основание, и наоборот. Уксусная кислота (pKa = 4,76) сильнее, чем HCN (pKa = 9). Следовательно, CN- - более сильное основание, чем CH3COO-. При 298 K в водном растворе сумма силовых показателей кислоты и основания в сопряженной протолитической паре равна 14:

В справочных таблицах для кислотно-основных пар приводятся значения только константы кислотности. Для многоосновных кислот Ka определяется для каждой ступени ионизации. На примере ортофос-форной кислоты:



Константа кислотности фосфорной кислоты по второй ступени может трактоваться как константа кислотности дигидрофосфат-иона, а константа кислотности по третьей ступени - как константа кислотности гидрофосфат-иона, т.е. Ka(H3PO4)II = Ka(H2PO4-), Ka(H3PO4)III = = Ka(HPO42-).

Константа равновесия процесса (I-III) H3PO4 + 3H2O о 3H3O+ + + PO43- рассчитывается как произведение констант кислотности всех

стадий: Ka(H3PO4)I-III = Ka(H3PO4)I • Ka(H3PO4)II • Ka(H3PO4)III =

= 7,2 • 10-3 • 6,2-10-8 • 4,6 • 10-13 = 2,1 • 10-22.




В рассмотренном выше процессе ступенчатой диссоциации фосфорной кислоты дигидрофосфат-ион в реакции (I) выполняет функцию основания, а в реакции (II) - кислоты. Аналогично гидрофосфат-ион в реакции (II) - основание, а в реакции (III) - кислота. Частицы, способные к взаимодействию как с кислотами, так и с основаниями называются амфолитами. Типичными амфолитами являются аминокислоты. Например, глицин:



Константу равновесия реакции нейтрализации можно выразить не только через равновесные концентрации веществ и ионов, но и через константы кислотности. В общем случае выражение для константы реакции нейтрализации, как и для любого другого прото-литического взаимодействия, можно получить, разделив константу кислотности вещества, стоящего в левой части уравнения, на кон-

станту кислотности вещества, стоящего в правой части уравнения:

Кобщ.= Ka (в левой части уравнения)/Ка (в правой части уравнения).

Реакция нейтрализации имеет большую роль в жизнедеятельности организма. Постоянная нейтрализация кислого желудочного содержимого с помощью желчи и секретов кишечника обеспечивает оптимальное переваривание пищи, поскольку ферменты, необходимые для этого, имеют значительно различающиеся оптимальные величины pH: pHопт.(пепсин) = 2; pHопт. (гастриксин) = 3,0-3,5; pHопт. (трипсин) = 7,8; pHопт.(панкреатическая липаза) = 9.

Реакция нейтрализации обеспечивает оплодотворение яйцеклетки сперматозоидом. Движению сперматозоида способствует слабощелочная среда, в кислой среде они малоподвижны. Поскольку у влагалищных секретов среда в норме кислая, для ее нейтрализации первая капля спермы, в которую добавляется специальный секрет, вырабатываемый придаточными половыми железами, имеет сильнощелочную реакцию среды. Под действием семенной жидкости кислая среда влагалища становится слабощелочной, что обеспечивает оптимальные условия для продвижения сперматозоидов.




pH межклеточной жидкости большинства органов составляет в норме 7,4. В целом pH внутриклеточной жидкости варьирует от 4,5. Даже в одном органе клетки, отличающиеся в морфологическом отношении, имеют разные значения pH внутриклеточного содержимого. Определенное значение pH поддерживается и в отдельных структурах внутри клеток. Например, содержимое лизосом всех клеток имеет pH 5.




Достарыңызбен бөлісу:
  1   2   3   4




©stom.tilimen.org 2022
әкімшілігінің қараңыз

    Басты бет